39 research outputs found

    Abstraction and Learning for Infinite-State Compositional Verification

    Full text link
    Despite many advances that enable the application of model checking techniques to the verification of large systems, the state-explosion problem remains the main challenge for scalability. Compositional verification addresses this challenge by decomposing the verification of a large system into the verification of its components. Recent techniques use learning-based approaches to automate compositional verification based on the assume-guarantee style reasoning. However, these techniques are only applicable to finite-state systems. In this work, we propose a new framework that interleaves abstraction and learning to perform automated compositional verification of infinite-state systems. We also discuss the role of learning and abstraction in the related context of interface generation for infinite-state components.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Closed-loop Analysis of Vision-based Autonomous Systems : A Case Study

    Get PDF
    Deep neural networks (DNNs) are increasingly used in safety-critical autonomous systems as perception components processing high-dimensional image data. Formal analysis of these systems is particularly challenging due to the complexity of the perception DNNs, the sensors (cameras), and the environment conditions. We present a case study applying formal probabilistic analysis techniques to an experimental autonomous system that guides airplanes on taxiways using a perception DNN. We address the above challenges by replacing the camera and the network with a compact probabilistic abstraction built from the confusion matrices computed for the DNN on a representative image data set. We also show how to leverage local, DNN-specific analyses as run-time guards to increase the safety of the overall system. Our findings are applicable to other autonomous systems that use complex DNNs for perception

    Compositional Solution Space Quantification for Probabilistic Software Analysis

    Get PDF
    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time

    ABSTRACT Test Input Generation for Java Containers using State Matching

    No full text
    The popularity of object-oriented programming has led to the wide use of container libraries. It is important for the reliability of these containers that they are tested adequately. We describe techniques for automated test input generation of Java container classes. Test inputs are sequences of method calls from the container interface. The techniques rely on state matching to avoid generation of redundant tests. Exhaustive techniques use model checking with explicit or symbolic execution to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore underapproximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using four Java container classes. We compare state matching based techniques and random selection for generating test inputs, in terms of testing coverage. We consider basic block coverage and a form of predicate coverage- that measures whether all combinations of a predetermined set of predicates are covered at each basic block. The exhaustive techniques can easily obtain basic block coverage, but cannot obtain good predicate coverage before running out of memory. On the other hand, abstract matching turns out to be a powerful approach for generating test inputs to obtain high predicate coverage. Random selection performed well except on the examples that contained complex input spaces, where the lossy abstraction techniques performed better

    Learning assumptions for compositional verification

    No full text
    Abstract. Compositional verification is a promising approach to addressing the state explosion problem associated with model checking. One compositional technique advocates proving properties of a system by checking properties of its components in an assume-guarantee style. However, the application of this technique is difficult because it involves non-trivial human input. This paper presents a novel framework for performing assume-guarantee reasoning in an incremental and fully automated fashion. To check a component against a property, our approach generates assumptions that the environment needs to satisfy for the property to hold. These assumptions are then discharged on the rest of the system. Assumptions are computed by a learning algorithm. They are initially approximate, but become gradually more precise by means of counterexamples obtained by model checking the component and its environment, alternately. This iterative process may at any stage conclude that the property is either true or false in the system. We have implemented our approach in the LTSA tool and applied it to a NASA system
    corecore